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Abstract

Computers are now embedded within an enormous variety of resources and works of art,
and take on tasks in roughly all facets of our life, since we are becoming more linked and
dependent on technology. Today, a variety of applications in the field of Computer
science and engineering share the goal to track and understand human anatomy based on
visua analysis. The interpretation of complex medical images is a difficult task which
normally requires specialists with years of training. Modern scanning devices produce
intricate data of large proportions, making it necessary to involve computational methods
into the interpretation of this data. One of the more challenging aspects of this
interpretation is the identification and representation of meaningful information, such as
certain anatomical structures or tissue types. To this extent, in the paper we develop and
use classification techniques based on transfer functions which operate on multiple value
domains. These domains are congtituted from various properties of the scanned data,
such as density, gradients or spatial positioning. The images generated through this class
of techniques alow for a more intuitive representation and interpretation of the
underlying data.
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1. Human-computer interaction in our changing world

Major changes have aroused within the computer revolution, which
cover al aspects of its role. The computer-aided applications in human life and
behaviour are manifold. Although information systems and sciences in general
have first and foremost been still on user interface design and the importance of
human-computer interaction, over the last decades, the computing sciences have
discussed on this matter [1]. The human-computer interaction emerged as a
major discipline in computing, with the substantial support of engineering,
education, behaviour, psychology, graphics [2]. In addition, the study of the
connection involving humans and computers has rapidly develop into one of the
most dynamic and significant fields of technical investigation. In spite of its
short history, Computer science has brought fundamental contributions to

" E-mail: mariusgav@tuiasi.ro



Gavrilescu/European Journal of Science and Theology 8 (2012), 4, 159-170

Science and society, being a founding science of the contemporary era of human
history characterized as the Information Age [3].

The rapid advancement of Science and technology, particularly in recent
decades, has brought forth multiple benefits for mankind in terms of health,
well-being and cognitive freedom. For example, researchers of Artificial
Intelligence in education have been developing specific materials for adaptive
learning in complex domains like programming languages, Mathematics,
Medicine, Physics, industry, Electronics, etc. [4]. Performances in algorithmic
music composition have been achieved in European concert music for centuries.
However, once they have been implemented in computer software, these
systems have expanded into systems of music representation and production [5].
Computers play a central role in response to demands of transport operations,
including public dia-aride transportation services, shared-ride taxis, airlines,
rail transport, etc. Computer aided engineering methods are already applied in
kinematics and dynamics of mechanica systems [6], drugs design [7],
manufacturing design [8], Medicine[9].

2. Computer-aided visual analysis of the human body

The field of medical imaging has benefited to a great extent from the
development of computer technology. Non-intrusive imaging techniques such as
Computed Tomography (CT), Magnetic Resonance Imaging (MRI) or
ultrasound have proven indispensable for the proper diagnosis of multiple health
conditions. Furthermore, modern scanning devices are not restricted to the
medical field and have wide applicability in many other branches, such as
industrial feasibility testing, fault detection in equipment and materials [10], or
3D seismography [11]. The modern versions of these devices generate complex
data sets of large proportions, which contain a great deal of potentialy useful
information [12].

Traditionally, two-dimensional (2D) dlices are produced from this data,
which are individualy analyzed by a speciaist. However, thisisin many cases a
tiresome and time-consuming task, especially for large scans comprising
hundreds of dlices. Even with a smaller number of dices, expert training in
radiology is still required for a proper interpretation, making the information
contained therein inaccessible to the general public. As a solution to this
problem, the field of volume graphics [13, 14] provides techniques for the direct,
three-dimensional (3D) representation of this type of data. Normaly, a
radiologist analyzes individual 2D slices and mentally forms a complete picture
of the originating object. When employing volume visualization techniques,
images may be generated which approximate the shape and features of the
scanned object or anatomical structure far more closely, while alowing for the
visual separation of meaningful information through a careful manipulation of
colour and opacity.
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Detecting this information from the entire available data is a complex
problem which has not been fully solved, given the wide variety of data sets and
the large number of objects or structures which undergo scanning. The
classification of this data therefore offers multiple challenges, especialy when
dealing with medical scans, due to the complexity of the human body and the
small size and elusive nature of the features or structures which often need to be
detected. The following sections describe various techniques for the
classification of volume data originating from medical scans. We show how
multiple criteria can be used for feature separation, and employ various types of
so-called transfer functions to generate colour and opacity from the originating
data, based on these criteria.

3. A scientific case study against visual analysis of the human body through
volume classification

3.1. Volume data sets and classification techniques

A 3D medica scan originating from various scanning devices may be
assembled into a volume data set, which may then be subjected to reconstruction
and visualization techniques that produce a volume object [15]. Such an object is
constituted from atomic elements referred to as voxels, the 3D equivalents of
pixels [16]. Therefore, a volume data set may be seen as a 3D volumetric
representation of an object. By applying projection transforms, a 2D image may
be generated from this data, which is then represented on screen for visual
analysis. However, not all voxels are part of interesting or useful information.
From the entire data set, only certain features or structures may be of interest,
such as, for instance, blood vessels, certain types of tissues, etc. Therefore,
proper classification of the data is required, which involves the detection and
separation of useful voxels, while discarding the rest. Most commonly, the
useful information contained within a volume constitutes a rather small
percentage of the entire available data. This point is illustrated in Figure 1. A
rendering of a 3D medical scan is shown, along with a bounding box which
circumscribes the entire data set. The visible structures are in the centre and it
can be easily calculated that they constitute about 23% of the whole data set.
Therefore, 23% of the voxelsin thisimage are opague or semi-transparent, while
the rest are invisible. The information which presents interest has been visually
separated from the rest of the data based on differences in opacity. Furthermore,
colour and various degrees of transparency are used to highlight various
structures within the visible object: bone is visually separable from skin and
other tissue types.

Figure 2 illustrates a simple case of volume classification: assign certain
levels of opacity and colour to meaningful information, and eliminate the rest by
making it transparent.

161



Gavrilescu/European Journal of Science and Theology 8 (2012), 4, 159-170

Figure 1. Rendering of amedical volume; various tissue types are visible, while the
bounding geometry encompasses the entire data set.

opacity

density

Figure 2. Transfer function specification: () various types of tissues are separated based
on differences among their densities; (b) a more feature-centric approach clearly
highlights specific tissue types, specifically, blood vessels.
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Classification is an important step in the volume rendering pipeline and it
has to be implemented explicitly since volume data does not in itself contain
information on structures, features or anatomical parts. A data set is in fact a
three dimensional array of scalar values, which each such scalar vaue
corresponding to a voxel from the volume. Therefore, each voxel has an
associated number, which is a rough indicator of the physical properties of the
material from the corresponding scanned object. The values often indicate the
density of the material, thus, voxels with lower scalar values are typically part of
lower density areas from the volume (such as softer tissue, cavities etc), while
higher scalar values indicate higher density regions (bone tissue, metal).
Furthermore, the initial data does not provide any optical information (colour,
opacity), which is needed for the generation of images. It is up to the developers
to implement proper classification techniques which alow the identification of
useful information, while at the same time assigning colour and opacity to each
voxel so that they may be represented on a display.

V olume classification techniques mostly fall within two categories:

e segmentation, which typically takes place in a pre-processing step and
identifies one or several distinct objects within the data. Each voxd is
assigned an object ID that indicates which of the identified objects it
belongs to. Segmentation algorithms are typically decoupled from the
rendering stages; therefore, each identified object may be represented viaits
own rendering method. When generating a final, on-screen image, objects
may overlap or occlude each other, which creates the situation where pixels
colours result from a combination of one or multiple object [17, 18].

o transfer functions constitute a broad category of classification methods,
which involve the use of various mapping functions to assign colour and
opacity to the voxels inside a volume, based on one or multiple criteria.
Usually, atransfer functions assigns colour and opacity (RGBA values) to a
subset of voxels sampled from the volume. Subsequently, the colours of the
on-screen pixels are assembled from the RGBA values of the sampled
voxels[19].

In this paper, we focus on transfer function-based classification,
specifically, on the various domains in which transfer functions may operate. We
define these domains based on various voxel properties, such as scalar value,
gradient magnitude, curvature or spatial position. These properties are, in fact,
criteria for classification; with each added criterion, increasingly complex and
hard-to-detect features may be identified and represented. Transfer functions are
an important component of the volume rendering process and are the main factor
which decides the colours of the resulting image. As mentioned, volume data
itself does not contain information on colour and opacity, which is required for
the simulation of light interaction and the implementation of shading and
rendering algorithms. A transfer function (Ty) therefore bridges the gap between
non-optical voxel properties vi,...,.v, and the optical characteristics (RGBA
quadruplets) required for visual representation (Equation 1).
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3.2. Data-based transfer functions

The most basic transfer functions directly operate on the scalar values of
the voxels from the originating data set. Each voxel has one such value, and the
range of these values constitutes the domain of the transfer function [20]. The
scalar values commonly indicate the density of the corresponding media. For
each density level, a data-based transfer function specifies certain colour and
opacity values. Various structures and shapes may therefore be isolated from the
full data set by virtue of the fact that their densities are distinct from other,
surrounding elements. Figure 2 illustrates the specification and use of a data-
based transfer function. We have implemented a manual means of defining the
transfer function, as shown at the bottom of Figure 2. The shape of the function
is clearly visible and adjustable in the interface: the horizontal axis contains
density levels (which correspond to the values from the origina data set), while
the vertical axis represents opacity. The circular controls are used to define the
opacity, while the triangular ones specify colour values. Certain elements of
interest such as bone or blood vessels are assigned a higher opacity and
distinctive colours, making them easily identifiable from the rest. The shape of
the transfer function may be adjusted as needed, so as to highlight meaningful
anatomical structures.

The transfer function is generated from the control points via Catmull-
Rom interpolation [21], for a smocth transition between domain values. The
shape depicted in the interfaces from Figure 2 determines the distribution of
opacity values among density levels. Lower density material such as skin is
assigned lower opacity so that it does not occlude other anatomical structures
located toward the centre of the volume.

While this approach offers great flexibility when classifying volume data,
it also comes with drawbacks. Specifically, it is unable to separate anatomical
structures or tissues which share the same density. Any set of voxels which
contain the same scalar values are treated as belonging to the same object,
though this may not always be the case. This necessitates the use of other
classification criteria, as elaborated upon in the following sections.

3.3. Gradient-based transfer functions

The gradient vector (or gradient, in short) is a measurement of the
variation of scalar values from the volume data set. Considering that the volume
is described by a function V : R®® — R, which assigns a scalar value to each
position from a region in 3D space, the gradient is a three-component vector
composed of the partial derivatives of V aong the three directions, x, vy, z
(Equation 2).
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oV(x,y,z)/ ox
grad(V) = VV(x,y,z) = 6V(x,y,z)/8y 2
oV(x,y,z)/ 0z

The direction of the gradient shows a variation of scalar values, which
may suggest meaningful surfaces in the volume. The gradient magnitude
indicates the degree or significance of the change, thereby pointing out the
amount of difference between the materials located on either side of a bordering
surface [22]. In practice, we approximate the gradient using central differences.
For any position in the volume, we sample pairs of voxel values on either side of
that position, one pair for each axis. The differences among the three pairs
closely approximate the components of the gradient. Considering that the
samples are taken at distance d from the target position, the gradient is computed
as shown in Equation 3.

V(x+d,y,z)-V(x-d,y,2)
VV(x,Y, z):% V(x,y+d,z)-V(x,y-d,z) 3)
V(x,y,z+d)-V(xy,z—-d)

Gradient-based transfer functions operate on gradient magnitudes, rather
than densities. We use these functions to classify data and identify structures that
could not be isolated using data-based means alone. The images in Figure 3(a)
and Figure 3(b) are generated using data-based and gradient-based classification,
respectively. While data-based classification can easily separate high density
material such as teeth, it makes it difficult to highlight various other features
located in the vicinity of the skull cavity. These have density values similar to
other occluding structures. However, they are identifiable using a gradient-based
approach, which excels at determining the borders between different media
Figure 3(b) shows how, using gradients, other more problematic structures can
be identified, such as the sinus cavity or the metencephalon.

Two or more structures with overlapping density ranges have, in most
cases, different surface properties, making them good candidates for gradient-
based classification. While they have densities similar to their neighbours, their
outlining surfaces make them unique.

3.4. Curvature-based classification

Curvature values quantify the flatness of a surface or region. The flatter
the surface in a specific spot, the lower the curvature for that spot. Conversely,
where valleys and ridges are present, or where the surface is highly irregular,
curvature values are correspondingly high. Traditionally, the computation of
local curvature relies on complex convolution operations, which involve the
computation of the second derivative of the volume function [23]. Other
methods are tailored for ray casting-based direct volume rendering approaches
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and involve the approximation of curvature values along projected rays [24].
Once curvature values are obtained, their range may constitute the domain of
transfer functions, wherein opacity and colour are assigned based on the level of
deformation of the local surface.

(b)

Figure 3. Classification using: (a) adata-based transfer function; (b) a gradient-based
transfer function. The latter excels at detecting meaningful surfaces as opposed to solid
structures and is capable of revealing additional features.

angle ~= 20°

(a) (b)

Figure 4. Approximation of local curvature: (a) gradient vectors on either side of the
target position form an angle, thus indicating a "bump" in the local surface; (b) when
gradient vectors are nearly parallel, the local surfaceis almost flat.

We calculate curvature values based on an approximation method.
Specificaly, for any arbitrary position in the volume, we evauate the local
curvature by computing the differences between the angles of neighbouring
gradient vectors. Since gradients indicate the orientation of local bordering
surfaces, the greater the angle between consecutive gradients, the greater the
curvature in the immediate neighbourhood (Figure 4).

Similar to the approaches used in Section 3.2., we sample neighbouring
gradient pairs along each axis and eval uate the angle in-between the gradients in
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each pair. The result is a three component vector; the local curvature is indicated
by its magnitude. Thisisillustrated in Equation 4, where the curvature value k in
position (X, y, 2) is the magnitude of the vector formed by the dot products of
gradients sampled at distance d and normalized.

VV(x+d,y,z), -VV(x-d,y,z),
k(x,y,z)=|| VV(x,y+d,z), - VV(x,y-d,z), (4)
VVix,y,z+d), -VV(x,y,z-d),

Figure 5 shows a rendered image where local curvature is used to identify
regions according to their level of deformation. In the darkest spots, the depicted
surface forms narrow angles, thus the corresponding curvature value is high.
Such areas which exhibit high curvature are useful for highlighting significant
contours around irregular anatomical features. The identification of such
contours isimportant for isolating regions with similar surface characteristics.

Figure 5. Volume rendering where local curvature is shown though greyscale levels
(darker regions have a greater degree of irregularity and higher curvature values).

3.5. Distance-based classification

In previous sections, the transfer function domains have so far been based
on or derived from the scalar values from the data set. Conversely, distance-
based classification accounts fro the spatial positioning of the voxels. This
constitutes an additional, independent means of separating regions in the
volume. The main idea is that the voxels should be classified according to their
distance from a focal region. Such regions may be constituted from a single
point in volume space, or an entire pre-identified substructure from inside the
volume [25]. Distance-based transfer functions operate on a domain constituted
from the pre-computed distances between each voxel and the chosen focal
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region. We used distance based classification alongside the more classic, data-
based transfer function, to render a more complete picture of the dataset; thus,
the color and opacities assigned as a result of scalar value-based classification
are modulated by a distance-based transfer functions, thereby revealing regions
not easily classifiable using data-based means aone.

The approach first involves the establishment of a focal region. We
exemplify by selecting a point roughly in the middle of the volume. Distances
from the point to every voxel are then pre-computed and stored in a distance
volume. A distance-based function is defined, which operates on the values
stored in the distance volume, as opposed to the original scalars generated by the
scanning device. The opacity values of voxels are then tweaked using this new
criterion, i.e. voxels which are at certain distances from the focal point have
certain opacities. Figure 6 depicts the usage of distance-based classification. The
image in Figure 6(a) is rendered using a traditional data-based transfer function,
which assigns opacity and colour. In Figure 6(b) a secondary, distance based
transfer function is used to modulate the opacity around the centre of the volume
(the focal point), which is adjusted so that the areain the vicinity of the centreis
visually removed. This reveals additional structures and details within the
volume, while preserving the opacity of the outer ‘shell’, which constitutes

context information.
(d)

Figure 6. Images generated using distance-based criteria: (a) using a data-based transfer
function; (b) adding distance alows for the removal of voxels around the centre of the
volume; (c) and (d) two different views of the same volume generated viafocal plane-

based distance.

(a) (b) (c)

Distance based classification need not be restricted to focal points.
Indeed, virtually any geometry can be used. In the ssmplest case, the distance
values can be computed in relation to a focal plane, which may have any
arbitrary orientation. The constituents of the volume are then separated based
on their distance from the plane. A result of this approach is visible in Figure
6(c) and (d), where, as previoudy, data-based and distance-based transfer
functions are used to visualy separate and group voxels into volumetric slices.
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This approach has an effect similar to the use of multiple clipping planes [14],
but with several advantages. First, setting up and manipulating multiple
clipping planes can become tedious; a distance transfer function can recreate
the same effect from a single user interface element, similar to the one from
Figure 2. The use of a transfer function generated via smooth interpolation
alows for certain areas to transition smoothly from fully opaque to fully
transparent. In Figure 2, sharp slices through the volume, toward the left side,
are simultaneously generated alongside smoother transitions near the centre-
right. The effect is achieved from the same transfer function; no further
clipping algorithms are necessary.

7. Conclusions

In this paper we have so far explored the use of multiple criteria for the
isolation of meaningful information from medical scans. This presented a
number of challenges, due mostly to the complex nature of the data involved.
Through the use of volume rendering techniques, a scanned object may be
represented as a 3D construct, while most of the relevant information can be
represented in a single image. One of the most important aspects of this process
was the classification stage, where relevant information as isolated from the rest
of the data. This was achieved through the use of transfer functions, which
assigned colour and opacity to the constituents of the volume, while being
capable of operating on multiple domains. The first such domain was generated
from the range of initial scalar values. This allowed for the isolation of various
anatomical features such as bone and blood vessels based on differences in
density. However, additional criteria were needed when this form of
classification had reached its limitation. We then used gradients and curvature
values to further refine the classification process. While gradient magnitudes
proved useful for revealing significant surfaces, the computation of curvature
yielded the possibility to identify features such as valleys, ridges, and, generally
speaking, surface components which exhibited deformations and irregularities.
Finally, accounting for the spatial distance of volumetric structures from an
explicitly-selected focal geometry offered an additional strong criterion for
classification. Removing the voxels around a specified focal point reveaed
additional anatomical structures in the immediate neighbourhood, while
adjusting opacities based on the distance from afocal plane allowed the efficient
emulation of clipping geometry.

Such techniques, aong with multiple others from within the field of
volume visualization alow for the generation of high quality images for the
efficient and intuitive visual analysis of the underlying data. Future, subsequent
developments in this area will focus on refining developing further
classification methods based on additional, more complex criteria, such as
visibility, occlusion or user-centric information which involve semantics or
more advanced, intelligent and reactive visualization pipelines.
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